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LElTER TO THE EDITOR 

Periodic orbit expansions for classical smooth flows 
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% Fachbereich Physik der Philipps-UniversitBt, Renthof 6, 0-3550 Marburg, Federal 
Republic of  Germany 

Received 21 December 1990 

Abstract. We derive a generalized Selberg-type zeta function for a smooth deterministic 
flow which relates the spectrum of an evolution operator to the periodic orbits of the Row. 
This relation is a classical analogue of the quantum trace formulae and Selberg-type zeta 
functions. 

It is a characteristic feature of deterministic chaotic systems that despite their ergodic 
behaviour at asymptotic times, the motion is strongly correlated on short time scales. 
This is reflected in the peaks in the Fourier transforms of classical autocorrelation 
functions seen in a number of systems [l-41. The peaks occur close to frequencies of 
dominant periodic motions, and their physical interpretation is that of resonances: the 
system preferentially exercises this motion, but due to its instability it cannot do  so 
forever. For the axiom A systems a theory of such resonances has been developed by 
Ruelle [5-7], Pollicott [8] and others. 

These resonances, as well as many other quantities of physical interest in dynamical 
systems, such as dimensions, Lyapunov exponents and entropies, can be expressed as 
averages over chaotic sets (repellers, 'strange' attractors, hyperbolic regions of the 
constant energy manifolds of classical Hamiltonian dynamics, the Julia sets of the 
holomorphic dynamics, and so on). An effective way to compute such averages is to 
rewrite them as averages over periodic orbits and then use the cycle expansions [9,10] 
of the corresponding zeta functions [ l l ,  121. With this purpose in mind, we present 
here a zeta function (9) associated with smooth dynamical flows. As we have shown 
in [13], this zeta function is an efficient tool for accurate computation of classical 
resonances. 

Consider a dynamical system described by d first-order differential equations 
x = F ( x ) .  The corresponding flow f '  maps xo into x = f '(xo) in time 1. The evolution 
of a density p ( x )  in this d-dimensional space is given by 

The kernel 2' = S(x- f ' (y))  is the evolution operator (also known as the transfer, the 
Perron-Frobenius or the Ruelle-Araki operator in a variety of contexts). 2' is a linear 
operator, with eigenvalues e-'o', e-?I', . . . . The physical significance of these eigen- 
values is perhaps most easily grasped by considering the simplest application of zeta 
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functions, evaluation of repeller escape rates. Given a finite enclosure V, the fraction 
of the initial volume that has not escaped by time I is given by [14] 

If the flow is unstable and locally expanding, this fraction is expected to decay 
exponentially, as r( I )  = e-'y. The escape rate is the asymptotic, I + m value of the decay 
exponent y. The leading eigenvalue of 2' dominates the integral (2) and determines 
the escape rate, while the non-leading eigenvalues (possibly complex eigenvalue pairs, 
but with real parts less than the leading eigenvalue) describe correlations within the 
flow on the repeller [4,6]. We shall evaluate here the spectrum of 9' by computing 
the trace 

For rigorous treatments (which require smearing out of the delta functions) we refer 
the reader to mathematical literature [15-181; a good discussion of the difficulties 
inherent in the spectral theory of Perron-Frobenius operators is given in Dorfle [19]. 

According to the theorems of Ruelle and Pollicott for the axiom A systems and 
numerical evidence for a number of other systems, the spectrum of purely chaotic 
system consists of a series of resonances ym of multiplicity m,, 

m 

tr 3' = m, e-".'. ( 4 )  
o = o  

The ye's are the positions of the resonances seen in the Fourier transforms of correlation 
functions, y:'= T,+ir,. 

To evaluate the contribution of a prime periodic orbit p of period T, to the trace, 
we go to a coordinate system with a longitudinal coordinate dxll along the direction 
of the flow F ( x ( t ) ) ,  and (d - 1) transverse coordinates xl along a set of transverse 
directions i l ( / ) ,  . . . , id-,(/): 

(tr2 ')Ip = 5 dx, dxll S~(x-f'(x))S~,(x-f'(x)). (5 )  
"P 

Integration is restricted to a tube V, in the neighbourhood of the cycle. The integral 
picks up  a contribution whenever a trajectory returns to its starting point, i.e. multiple 
traversals of prime periodic orbits also have to be taken into account. 

Evaluation of the transverse delta functions requires the linearization of the periodic 
flow in a plane perpendicular to the orbit, 

where J,  is the (d - 1) x ( d  - 1) stability matrix, i( / + T,,) = J,$( t ) ,  evaluated on the 
p-cycle. Its eigenvalues Ap.,, A,+, . . . , Ap,d-I are independent of the position along the 
orbit and the choice of transverse coordinates. A geometrical interpretation of (6) is 
that after the rth return to a surface of section, the initial tube V,, has been stretched 
and squeezed along the stability matrix eigendirections perpendicular to the flow, with 
only the overlap with the initial volume given by l/ldet(l-J;)l. 

: 
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Let o = IF(x)l be the velocity along the orbit and change variables dxll = U df'. 
Whenever the time I' is a multiple of the period, the longitudinal delta function 
contributes a term l/o, cancelling the corresponding factor v from the change of 
variables, and the integral along the trajectory yields a factor Tp: 

In the above, we have tacitly assumed hyperbolicity, i.e. that all eigenvalues are 
bounded away from unity, as the integral cannot be carried out if there are marginal 
eigenvalues ]AI = 1. A familiar example are families of periodic orbits in  integrable 
Hamiltonian systems, where a single continuous coordinate distinguishes the orbits 
within a family. This coordinate has to be dealt with in a manner similar to the above 
integration along the orbit. 

Substituting ( 6 ) .  (7) into (3), we obtain an expression for t i  2'' as a sum over all 
prime cycles p 

where in the last step we have replaced the 6 function by its Fourier representation. 
After a rotation k+is, it is easy to check that the above sums are the logarithmic 
derivative of the zeta function 

so putting (4) and (8) together we can identify 

If Z(s) is an entire function, the integration contour can be deformed to encircle the 
poles of Z'(s)/Z(s) and pick up a contribution m, e-'.' from each pole s = y= of 
multiplicity m.. Hence the zeros of Z(s) determine the spectrum yo,  y , ,  . . . , as 
asserted in the introduction, and the determination of resonances is now reduced to, 
a computation of zeros of the zeta function (9). 

In order to rewrite Z ( s )  as an infinite product over periodic orbits, we note that 
the r sum (9) is close in form to expansion of a logarithm. To bring (9) to such form, 
we factorize the denominator determinants into products of expanding and contracting 
eigenvalues. For concreteness, consider a three-dimensional flow with one expanding 
eigenvalue A (of absolute value > I )  and one contracting eigenvalue A, with 1Al<1.  
(An example are conservative two degree of freedom systems restricted to the energy 
shell; extension to higher dimensions is straightforward [9,10].) Then the determinant 
in (9) may be expanded as follows: 

m c o  

(det(1 -J;)I-l = 1(1 -A;)(] -,+;)I-' = IAJ' 2 A F A k .  (11) 
j - 0  X-0 
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With this we can rewrite the exponent in (9) as 

and bring Z ( s )  to a 'Selberg product' form [20]: 

Readers familiar with the Fredholm determinants Z ( z )  = d e t ( l - & ? )  for maps [11,12] 
will note that the continuous time Z ( s )  is a natural generalization of Z ( z )  for the 
discrete time case, with the p-cycle weight z"~/(det( l -Jp) /  replaced by the z+e'  
continuous time weight eSTn/ldet(l -Jp)l. Indeed, (9) is essentially the zeta function 
for Rows studied by Ruelle [ 5 ,  IS], Pollicott [8], Fried [21] and others. The main 
difference between our result and the zeta functions of the above authors is that they 
project the Row onto the unstable manifold, and keep only the expanding eigenvalues 
in the expansion [12]. This amounts to dropping the product over k in (13) and the 
exponent k +  1 in (14); while this reduction does not affect the leading eigenvalue, the 
resulting spectrum is not the physically interesting correlation spectrum (4). 

Evaluation of (13) by means of cycle expansions is discussed in detail elsewhere 
[9, IO]. Briefly, we find it convenient to introduce a book-keeping parameter 2"" in 
(13), with np the topological cycle length, i.e. the number of times the p-cycle crosses 
a Poincare surface of section. One then expands the infinite product, arranges it in a 
power series in z, and after truncating the series sets z = 1 in the final computation. 
One example of such calculation has been presented in [13], and others are in 
preparation. 

Equations (9), (13) are the main result of this communication. We conclude with 
several remarks. 

The mathematical literature derivations of Z ( s )  are based on the Row suspension 
approach [22]; in which a flow is replaced by a Poincar.6 map with appropriate measure. 
Here we have presented an alternative derivation, replacing the generating sum manipu- 
lations of t r 2 "  used in the discrete time Z ( z )  derivations by integral transforms of 
tr 9, in order to emphasize the similarity to the derivation of the quantum zeta function 
[23,24]. 

Periodic orbit expansions figure prominently in the semiclassical description of 
chaotic systems, where an expression for the quantum energy spectrum in terms of 
cycles of the classical Row has been given by Gutzwiller [23,24]. For ZD Hamiltonian 
systems A = l / A  and the classical Z ( s )  may be written as 

whereas the quantum [24,25] equivalent reads 

with S, the classical action, and U,, the Maslov index. Both zeta functions relate the 
spectrum of an evolution operator to periodic orbits of a Row; in the classical context, 
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the operator is a Dirac delta function, and the above formulae for Z ( s )  are exact, 
while in the quantum context the operator traces have so far been evaluated only in 
a stationary phase approximation. Remarkably enough, for spaces of constant negative 
curvature, also (15) is exact; in this case the length, the period and the instability of 
a geodesic are all proportional to each other, I,, oc T, CC In A,,, and (15) is the Selberg 
zeta function [20]. 

The differences between the classical and quantum zetas reflect the fact that in  
ciassicai mechanics probabiiities are added (whence the iuii determinant in the 
denominators in (9 ) ) .  whereas in quantum mechanics amplitudes are superimposed, 
hence the square root of the eigenvalue in [15]. 

We are grateful to E Aurell, M I  Feigenbaum and H H Rugh for stimulating discussions 
and to V Baladi for clarifying the relation between the Z ( s )  function presented here, 

tion for the support and M C Gutzwiller for the hospitality at the IBM Watson Research 
Center, where part of this work was done. 
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